oktopus
Installation
Development version
API documentation
Loss Functions
Inheritance Diagram
Prior Distributions
Inheritance Diagram
Likelihood Distributions
Inheritance Diagram
Posterior Distributions
Inheritance Diagram
IPython notebooks
Fitting a line to Poisson data
Fitting a line to correlated Gaussian data
Fitting a line to Gaussian data with known covariance matrix
oktopus
Docs
»
Index
Index
B
|
E
|
F
|
G
|
H
|
J
|
L
|
M
|
N
|
O
|
P
|
R
|
U
|
V
B
BernoulliGaussianMixtureLikelihood (class in oktopus.likelihood)
BernoulliLikelihood (class in oktopus.likelihood)
E
evaluate() (oktopus.likelihood.BernoulliGaussianMixtureLikelihood method)
(oktopus.likelihood.BernoulliLikelihood method)
(oktopus.likelihood.GaussianLikelihood method)
(oktopus.likelihood.LaplacianLikelihood method)
(oktopus.likelihood.Likelihood method)
(oktopus.likelihood.MultinomialLikelihood method)
(oktopus.likelihood.MultivariateGaussianLikelihood method)
(oktopus.likelihood.PoissonLikelihood method)
(oktopus.loss.L1Norm method)
(oktopus.loss.LossFunction method)
(oktopus.posterior.Posterior method)
(oktopus.prior.GaussianPrior method)
(oktopus.prior.JointPrior method)
(oktopus.prior.LaplacianPrior method)
(oktopus.prior.Prior method)
(oktopus.prior.UniformPrior method)
F
fisher_information_matrix() (oktopus.likelihood.BernoulliLikelihood method)
(oktopus.likelihood.GaussianLikelihood method)
(oktopus.likelihood.LaplacianLikelihood method)
(oktopus.likelihood.Likelihood method)
(oktopus.likelihood.MultinomialLikelihood method)
(oktopus.likelihood.MultivariateGaussianLikelihood method)
(oktopus.likelihood.PoissonLikelihood method)
fit() (oktopus.loss.LossFunction method)
G
GaussianLikelihood (class in oktopus.likelihood)
GaussianPosterior (class in oktopus.posterior)
GaussianPrior (class in oktopus.prior)
gradient() (oktopus.likelihood.BernoulliLikelihood method)
(oktopus.likelihood.GaussianLikelihood method)
(oktopus.likelihood.MultinomialLikelihood method)
(oktopus.likelihood.MultivariateGaussianLikelihood method)
(oktopus.likelihood.PoissonLikelihood method)
(oktopus.loss.LossFunction method)
(oktopus.posterior.Posterior method)
(oktopus.prior.GaussianPrior method)
(oktopus.prior.JointPrior method)
(oktopus.prior.UniformPrior method)
H
hessian() (oktopus.loss.LossFunction method)
J
jeffreys_prior() (oktopus.likelihood.Likelihood method)
JointPrior (class in oktopus.prior)
L
L1Norm (class in oktopus.loss)
LaplacianLikelihood (class in oktopus.likelihood)
LaplacianPrior (class in oktopus.prior)
Likelihood (class in oktopus.likelihood)
LossFunction (class in oktopus.loss)
M
mean (oktopus.prior.GaussianPrior attribute)
(oktopus.prior.JointPrior attribute)
(oktopus.prior.LaplacianPrior attribute)
(oktopus.prior.UniformPrior attribute)
MultinomialLikelihood (class in oktopus.likelihood)
MultivariateGaussianLikelihood (class in oktopus.likelihood)
MultivariateGaussianPosterior (class in oktopus.posterior)
N
n_counts (oktopus.likelihood.MultinomialLikelihood attribute)
name (oktopus.prior.Prior attribute)
O
oktopus.likelihood (module)
oktopus.loss (module)
oktopus.posterior (module)
oktopus.prior (module)
P
PoissonLikelihood (class in oktopus.likelihood)
PoissonPosterior (class in oktopus.posterior)
Posterior (class in oktopus.posterior)
Prior (class in oktopus.prior)
R
regularization (oktopus.loss.L1Norm attribute)
U
uncertainties() (oktopus.likelihood.BernoulliLikelihood method)
(oktopus.likelihood.LaplacianLikelihood method)
(oktopus.likelihood.Likelihood method)
UniformPrior (class in oktopus.prior)
V
variance (oktopus.prior.GaussianPrior attribute)
(oktopus.prior.LaplacianPrior attribute)
(oktopus.prior.UniformPrior attribute)