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Exoplanet Transit Signals

● Orbiting exoplanet transits 
in front of host star

● Distinct box-shaped transits 

● Very shallow 0.01%–1.0% 
drops in stellar flux
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Astronet / C. Shallue
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False-positive Transit Signals

Eclipsing Binaries (EBs) Background Eclipsing Binaries (BEBs) Stellar Variability / Instrumental Noise
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The Kepler Pipeline

Target Pixel File (TPF)
Transiting Planet Search

Threshold Crossing Event (TCE)

Jenkins+2010, Seader+2013

Aperture Photometry 
& Systematics Correction

Smith+2012, Stumpe+2012
Data Validation

Wu+2010

Kepler TCE Review Team [human vetting]

Batalha+2013, Burke+2014, Rowe+2015, Mullally+2015Exoplanet Catalogues
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Where machine learning 
can (and is!) helping



Megan Ansdell, 233rd AAS Meeting,, 10 Jan. 2019

Classifying Transit Signals with Deep Learning
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Machine Learning

Deep Learning

Neural Nets

Convolutional 
Neural Nets
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Classifying Transit Signals with Deep Learning
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● Quick ➔ trained models take seconds to apply to new data

● Systematic ➔ important for calculating exoplanet occurence rates

● Upgradable ➔ re-doing analysis with upgrades is easy/quick

● Quantifiable ➔ can assign probabilities/uncertainties to planet candidates
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Astronet 
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Global View Local View

● Deep convolutional neural network written in TensorFlow

● Inputs are “local” and “global” views of each phase-folded TCE

● Two disjoint 1D convolutional columns + 4 fully connected layers

● Output is binary classifier in the range [0,1]

Shallue & Vanderburg 2018   ➔   [https://github.com/google-research/exoplanet-ml]
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Astronet 
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Shallue & Vanderburg 2018   ➔   [https://github.com/google-research/exoplanet-ml]

● Used lower SNR cutoff of 5.0 ➔ many more spurious TCEs, but ML vetting is quick/automated 

● Applied Astronet to subset (670) of known multi-planet systems ➔ know a priori that system is edge-on

JPL/NASA

● Discovered 2 new Earth-sized planets in high-multiplicity systems  ➔  Kepler 80g & Kepler 90i
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Exonet [Astronet + Domain Knowledge]
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Ansdell, Ioannou, Osborn, Sasdelli, et al. 2018   ➔   [https://gitlab.com/frontierdevelopmentlab/exoplanets]

● Pixel position of center of light in TPF as function of time
● Important for identifying EBs and BEBs

Centroid Time-series
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Exonet [Astronet + Domain Knowledge]
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Ansdell, Ioannou, Osborn, Sasdelli, et al. 2018   ➔   [https://gitlab.com/frontierdevelopmentlab/exoplanets]

● From KOI catalog: mass, radius, density, surface gravity, metallicity
● Important for identifying, e.g., giant star eclipsing binaries

Stellar Properties

KOI-977  [Teruyuki et al. 2014]
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Exonet [Astronet + Domain Knowledge]
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Ansdell, Ioannou, Osborn, Sasdelli, et al. 2018   ➔   [https://gitlab.com/frontierdevelopmentlab/exoplanets]

Improved Overall Performance 

Accuracy Avg. Precision

Astronet 95.8% 95.5%

Exonet 97.5% 98.0%

● Accuracy = % of correct classifications
● Precision = % of classified planets that are true planets
● Recall = % of planets recovered by model

Better model 
performance
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Earth-sized Planets still lurking in Kepler data?
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● Exonet promises to find new Earth-sized 
exoplanets still hiding in Kepler data

➔ 20% higher recall for small exoplanets
➔ Apply to SNR~5 TCEs

⊕ ⊕ ⊕

Transit SNR
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Incorporating Bayesian Deep Learning
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● Bayesian Deep Learning leverages dropout to 
efficiently produce uncertainties on probabilities
➔ Incorporate into exoplanet occurence rates
➔ Useful for prioritizing follow-up observations

Bayesian 
Deep 
Learning

≈ ≈ Gaussian 
Processes http://www.cs.ox.ac.uk/people/yarin.gal/website/blog.html
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Detection of Transits Directly in Target Pixel Files
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● TPFs (image time series) are minimally processed; find exoplanets traditionally missed?

➔ Can deep learning find more informative representations beyond highly processed light curves?
➔ Computationally expensive; unclear if effective on low-SNR TCEs that require phase-folding
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Questions?


